Design overview: Difference between revisions
No edit summary |
|||
Line 38: | Line 38: | ||
* [[Design calculations]] | * [[Design calculations]] | ||
Revision as of 08:56, 31 December 2018
Back to Regot main page.
Design overview hardware
Regbot consist of a microprocessor board (teensy 3.1/3.2) that controls 2 motors (Pololu 25D) through a motor driver (MC33926). Motor rotation data is collected from motor encoders. Motor current is avaiable and there is further a gyro-accelerometer sensor (see figure 1 below).
The processor is supplied with 5V from either USB or from a 12V battery or power supply.
A reset button disables the power - and therefore initiates a reboot.
The robot is differential controlled, where a difference in velocity between left and right wheel generates a turn.
The processor is an ARM MK20DX256 processoren (a 32bit 96MHz microprocessor) and is programmed to implement a number of control loops that is able to control some basic movements of the robot (see figure 2).
Figure 1. Hardware blockdiagram. Most blocks are off-the-shelf hardware modules from PJRC (Teensy), Pololu (motor, driver and buck-boost converter) and Sparkfun (IMU). Some of the supported sensors are optional, but all will have gyro to enable balancing and most also wifi to enable monitoring and confuguration without a USB cable.
Other sensors like an line (edge) detector (edge of a tape line on the floor), IR distance sensors (Sharp 2Y0A21 type) and wifi access may be implemented on some of the robots.
Design overview software
The robot software is shown as a block diagram in figure 2 below.
Figure 2. Overview of software data flow. Yellow is control blocks. Green is hardware (motor and sensors), Light green is calculations. Light blue is obtained values. Gray is input values.
Sample time for all controllers and data values are 1ms. All software is written in c++, based on Arduino libraries.
Most controllers can be switched off. I.e. if the velocity controller is switched off, then the reference input is fed directly to the output (in this case the reference input is then in Volts rather than m/s) and the acceleration limiter is bypassed too.