Basebot main code
Back to Basebot
Main code
The main code is in basebot_6.ino (sometimes renamed to basebot_6.cpp).
The code is based on the Arduino environment. Here, the normal C-main function is hidden. However, "setup()" is called first, followed by an endless loop that calls "loop()".
The Basebot API is in the "src" sub-directory.
Setup
The setup() function is like this and initializes all support modules:
void setup() // INITIALIZATION
{ // to be able to print to USB interface
Serial.begin(12000000);
// start timing
sampleTimer.begin(timerInterrupt, sampleTimeUs);
// Initialise sensors, safety and display (in the basebot API)
robot.setup(); // alive LED, display and battery
motor.setup(); // motor voltage
encoder.setup(); // motor encoders to velocity
encoder.pulsPerRev = 48;
imu2.setup(); // gyro and accelerometer
motor.setPWMfrq(80000);
usb.setup();
}
Timing
An interrupt controls timing.
// Sample time can not go lower than 300us const uint32_t sampleTimeUs = 1000; // desired sample time in us bool isSampleTime = false; float time_sec = 0;
void timerInterrupt()
{
isSampleTime = true;
time_sec += sampleTimeUs / 1e6;
}
Loop
The loop() function waits for the "isSamplingTime" flag to ensure a constant sample time.
Then all sensor data are updated (by the .tick() calls).
The "sequence" decides where to go when in a sequence of states.
The "control" function translates the desired sequence to motor voltage.
The motor voltage is then implemented by the "motor.tick()" function.
The essential data values are then added to the RAM-based log.
If it is not sampling time, then potential commands from the USB connection are serviced.
void loop ( void )
{ // init sample time
while ( true )
{ // main loop
// loop until time for next sample
if (isSampleTime) // start of new control cycle
{ // time for next tick
isSampleTime = false;
// read sensors
imu2.tick();
encoder.tick();
// updatePose();
// advance sequence (default is wait for start button)
sequenceTwoSteps();
//
if (state > 0)
{ // Only if started
// Calculate new motor voltage
controlUpdate();
}
// give value to actuators
motor.tick();
// save relevant values
updateLog();
// support functions
robot.tick(); // measure battery voltage etc.
display.tick(); // update O-LED display
}
usb.tick(); // listen to incoming from USB
}
}
State sequence
A state sequence is needed to implement a desired manoeuvre.
Global variables
int state = 0; // actual sequence state float endTime = 0; // for current state float desiredValue = 0; // desired (reference) value send to controller
void sequenceTwoSteps()
{ // this function is called at every sample time
// and should never wait in a loop.
bool button;
// this is a state machine
// state 0: wait for start button press
switch (state)
{ // run mission, initial value
case 0: //State 0 is just inactive, waiting for the start signal.
button = digitalReadFast(PIN_START_BUTTON);
if (button or robot.missionStart)
{ // Starting a sequence
start();
// Prepare next state
desiredValue = 0; // reference value to the controller
// to start the log with no velocity
endTime = time_sec + 0.020; // new state to end after 20ms
state = 10;
}
break;
case 10: // Wainitng for first step.
// test if this state is finished
if (time_sec > endTime)
{ // change to next values
desiredValue = 1.5;
endTime = time_sec + 0.48 ; // ~ 0.5 second
state = 11;
}
break;
case 11: // First step
if (time_sec > endTime)
{ // change to next values
desiredValue = 3;
endTime = time_sec + 0.50;
state = 12;
}
break;
case 12: // Second step.
if (time_sec > endTime)
{ // change to next values
desiredValue = 6;
endTime = time_sec + 0.5;
state = 100;
}
break;
case 100: // Maintain third level.
// stop after end time
if (time_sec > endTime)
{ // stop, but continue logging for a while (0.3 sec)
stop(0.3); // actually sets state to 999 (i.e. default:)
}
break;
default:
// this state is needed to enable a new start
if (time_sec > endTime)
finished();
break;
}
}
When 'state' is '0' and the start condition is fulfilled (the start button is pressed), 'state' is changed to 10.
This state also stops the display update. Display update takes a relatively long time, and if the sample time is short (<2ms), there will be samples that are not run at the desired time.
When the state is 10, nothing happens until 500us has passed. Then, the desired value for the controller is set, and the state is changed to 20.
States 20 and 30 change the desired value after a given time.
State 98 allows the values for the stopping motors to be included in the mission.
State 99 stops the motors and allows the display to be updated. In this version, a printout of the actual measured sample time (estimated by the encoder module) is included.
Control and print results over USB
/**
* make the control */
void controlUpdate()
{ // do control during a mission only.
if (state > 0)
{ // running a sequence, so do control
float ref = desiredValue;
//
// set actuators
motor.motorVoltage[0] = -ref; // left motor
motor.motorVoltage[1] = ref; // right motor
//
if (true)
{ // see the result
Serial.print(float(micros() - startTime*1000)/1000.0);
Serial.print(" ");
Serial.print(ref);
Serial.print(" ");
Serial.print(-encoder.motorVelocity[0]); // radians/second
Serial.print(" ");
Serial.print(encoder.motorVelocity[1]);
Serial.println();
}
}
}
The function runs if the mission state 'state' is not zero (to avoid spamming the USB when nothing happens).
This function takes the desiredValue from the test sequence and sets this value as the motor voltage.
The rest is printing values to be sent over the USB connection.
The distance travelled for each wheel is found by multiplying the motor velocity (in radians per second) with sample time, the wheel radius (0.03m) and reduced by the gearing (9.28).